Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(23): e202301102, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36896730

RESUMO

Polyethylene glycol (PEG) is considered as the gold standard for colloidal stabilization of nanomedicines, yet PEG is non-degradable and lacks functionality on the backbone. Herein, we introduce concomitantly PEG backbone functionality and degradability via a one-step modification with 1,2,4-triazoline-3,5-diones (TAD) under green light. The TAD-PEG conjugates are degradable in aqueous medium under physiological conditions, with the rate of hydrolysis depending on pH and temperature. Subsequently, a PEG-lipid is modified with TAD-derivatives and successfully used for messenger RNA (mRNA) lipid nanoparticle (LNP) delivery, thereby improving mRNA transfection efficiency on multiple cell cultures in vitro. In vivo, in mice, mRNA LNP formulation exhibited a similar tissue distribution as common LNPs, with a slight decrease in transfection efficiency. Our findings pave the road towards the design of degradable, backbone-functionalized PEG for applications in nanomedicine and beyond.


Assuntos
Nanopartículas , Polietilenoglicóis , Animais , Camundongos , RNA Mensageiro/genética , Lipossomos , Lipídeos
2.
Bioconjug Chem ; 33(5): 839-847, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35446015

RESUMO

In recent years, stimuli-responsive degradation has emerged as a desirable design criterion for functional hydrogels to tune the release of encapsulated payload as well as ensure degradation of the gel upon completion of its function. Herein, redox-responsive hydrogels with a well-defined network structure were obtained using a highly efficient thiol-disulfide exchange reaction. In particular, gelation occurred upon combining thiol-terminated tetra-arm polyethylene glycol (PEG) polymers with linear telechelic PEG-based polymers containing pyridyl disulfide units at their chain ends. Rapid gelation proceeds with good conversions (>85%) to yield macroporous hydrogels possessing high water uptake. Furthermore, due to the presence of the disulfide linkages, the thus-obtained hydrogels can self-heal. The obtained hydrogels undergo complete degradation when exposed to environments rich in thiol-containing agents such as dithiothreitol (DTT) and L-glutathione (GSH). Also, the release profile of encapsulated protein, namely, bovine serum albumin, can be tuned by varying the molecular weight of the polymeric precursors. Additionally, it was demonstrated that complete dissolution of the hydrogel to rapidly release the encapsulated protein occurs upon treating these hydrogels with DTT. Cytotoxicity evaluation of the hydrogels and their degradation products indicated the benign nature of these hydrogels. Additionally, the cytocompatible nature of these materials was also evident from a live/dead cell viability assay. One can envision that the facile fabrication and their ability to degrade on-demand and release their payload will make these benign polymeric scaffolds attractive for various biomedical applications.


Assuntos
Hidrogéis , Polietilenoglicóis , Dissulfetos/química , Ditiotreitol , Hidrogéis/química , Oxirredução , Polietilenoglicóis/química , Compostos de Sulfidrila/química
3.
ACS Appl Mater Interfaces ; 13(5): 6011-6022, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33507728

RESUMO

Peptide-based subunit vaccines are attractive in view of personalized cancer vaccination with neo-antigens, as well as for the design of the newest generation of vaccines against infectious diseases. Key to mounting robust antigen-specific immunity is delivery of antigen to antigen-presenting (innate immune) cells in lymphoid tissue with concomitant innate immune activation to promote antigen presentation to T cells and to shape the amplitude and nature of the immune response. Nanoparticles that co-deliver both peptide antigen and molecular adjuvants are well suited for this task. However, in the context of peptide-based antigen, an unmet need exists for a generic strategy that allows for co-encapsulation of peptide and molecular adjuvants due to the stark variation in physicochemical properties based on the amino acid sequence of the peptide. These properties also strongly differ from those of many molecular adjuvants. Here, we devise a lipid nanoparticle (LNP) platform that addresses these issues. Key in our concept is poly(l-glutamic acid) (PGA), which serves as a hydrophilic backbone for conjugation of, respectively, peptide antigen (Ag) and an imidazoquinoline (IMDQ) TLR7/8 agonist as a molecular adjuvant. Making use of the PGA's polyanionic nature, we condensate PGA-Ag and PGA-IMDQ into LNP by electrostatic interaction with an ionizable lipid. We show in vitro and in vivo in mouse models that LNP encapsulation favors uptake by innate immune cells in lymphoid tissue and promotes the induction of Ag-specific T cells responses both after subcutaneous and intravenous administration.


Assuntos
Lipídeos/imunologia , Linfócitos/imunologia , Nanopartículas/química , Ácido Poliglutâmico/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos/química , Animais , Linhagem Celular , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Tamanho da Partícula , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/química , Células RAW 264.7 , Propriedades de Superfície , Vacinas/química
4.
Biomaterials ; 267: 120468, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120171

RESUMO

Cyclic polymers are an intriguing class of polymers due to their lack of chain ends. This unique architecture combined with steric constraints adorn cyclic polymers as well as nano-, micro- and macro-scale materials containing cyclic polymers with distinctive physicochemical properties which can have a profound effect on the performance of these materials in a wide range of applications. Within a biomedical context, biomaterials based on cyclic polymers have shown very distinct properties in terms of biodistribution, pharmacokinetics, drug/gene delivery efficiency and surface activity. This review summarizes the applications of cyclic polymers in the field of biomaterials and highlights their potential in the biomedical field as well as addressing future challenges in this area.


Assuntos
Materiais Biocompatíveis , Polímeros , Sistemas de Liberação de Medicamentos , Distribuição Tecidual
5.
Biomater Sci ; 8(9): 2600-2610, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239010

RESUMO

Incorporation of a therapeutic antibody into nanosized drug delivery systems can improve their target specificity. This work reports an antibody-conjugated targeted delivery system composed of polymer-dendron conjugates. Trastuzumab is chosen as the targeting moiety, since it is clinically used against tumor cells expressing HER2 receptors. A micellar delivery system was generated using amphiphilic polymer-dendron conjugates containing a fourth-generation polyester dendron as the hydrophobic block and a linear poly(ethylene glycol) (PEG) chain as the hydrophilic block. After preparation of docetaxel loaded (ca. 10% wt) micelles, trastuzumab was conjugated onto the micellar shell using an amidation reaction. Micelles remained stable after conjugation of the antibody, with a slight increase in size from 179 nm to 185 nm upon functionalization. Docetaxel release was determined to be responsive to acidic pH, and over the course of 30 h, 54% drug release was measured in acidic media, whereas it was around 30% under neutral conditions. Cytotoxicity experiments on MCF-7 and SK-OV-3 cell lines displayed improved toxicity levels for targeted micelles in comparison with the non-targeted counterparts, whereas pulse-chase experiments indicated effectiveness of micellar formulations and the presence of targeting groups. Cellular internalization experiments using fluorescence microscopy and flow cytometry further demonstrated the enhanced cellular uptake of antibody conjugated targeted micelles.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/administração & dosagem , Docetaxel/administração & dosagem , Sistemas de Liberação de Medicamentos , Micelas , Trastuzumab/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Docetaxel/química , Liberação Controlada de Fármacos , Humanos , Trastuzumab/química
6.
ACS Appl Mater Interfaces ; 10(48): 41098-41106, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30376295

RESUMO

The steady increase of antimicrobial resistance of different pathogens requires the development of alternative treatment strategies next to the oral delivery of antibiotics. A photothermally activated platform based on reduced graphene oxide (rGO)-embedded polymeric nanofiber mats for on-demand release of antibiotics upon irradiation in the near-infrared is fabricated. Cross-linked hydrophilic nanofibers, obtained by electrospinning a mixture of poly(acrylic acid) (PAA) and rGO, show excellent stability in aqueous media. Importantly, these PAA@ rGO nanofiber mats exhibit controlled photothermal heating upon irradiation at 980 nm. Nanofiber mats are efficiently loaded with antibiotics through simple immersion into corresponding antibiotics solutions. Whereas passive diffusion based release at room temperature is extremely low, photothermal activation results in increased release within few minutes, with release rates tunable through power density of the applied irradiation. The large difference over passive and active release, as well as the controlled turn-on of release allow regulation of the dosage of the antibiotics, as evidenced by the inhibition of planktonic bacteria growth. Treatment of superficial skin infections with the antibiotic-loaded nanofiber mats shows efficient wound healing of the infected site. Facile fabrication and implementation of these photothermally active nanofiber mats makes this novel platform adaptable for on-demand delivery of various therapeutic agents.


Assuntos
Hipertermia Induzida , Nanofibras , Fototerapia , Cicatrização/efeitos dos fármacos , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Grafite/química , Grafite/farmacocinética , Grafite/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanofibras/química , Nanofibras/uso terapêutico
7.
Bioconjug Chem ; 28(12): 2962-2975, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29136371

RESUMO

Polymeric micellar systems are emerging as a very important class of nanopharmaceuticals due to their ability to improve pharmacokinetics and biodistribution of chemotherapy drugs, as well as to reduce related systemic toxicities. While these nanosized delivery systems inherently benefit from passive targeting through the enhanced permeation and retention effect leading to increased accumulation in the tumor, additional active targeting can be achieved through surface modification of micelles with targeting groups specific for overexpressed receptors of tumor cells. In this project, nontoxic, biodegradable, and modularly tunable micellar delivery systems were generated using two types of dendron-polymer conjugates. Either an AB type dendron-polymer construct with 2K PEG or an ABA type dendron-polymer-dendron conjugate with 6K PEG based middle block was used as primary construct; along with an AB type dendron-polymer containing a cRGDfK targeting group to actively target cancer cells overexpressing αυß3/αυß5 integrins. A set of micelles encapsulating docetaxel, a widely employed chemotherapy drug, were prepared with varying feed ratios of primary construct and targeting group containing secondary construct. Critical micelle concentrations of all micellar systems were in the range of 10-6 M. DLS measurements indicated hydrodynamic size distributions varying between 170 to 200 nm. An increase in docetaxel release at acidic pH was observed for all micelles. Enhanced cellular internalization of Nile red doped micelles by MDA-MB-231 human breast cancer cells suggested that the most efficient uptake was observed with targeted micelles. In vitro cytotoxicity experiments on MDA-MB-231 breast cancer and A549 lung carcinoma cell lines showed improved toxicity for RGD containing micelles. For A549 cell line EC50 values of drug loaded micellar sets were in the range of 10-9 M whereas EC50 value of free docetaxel was around 10-10 M. For MDA-MB-231 cell line EC50 value of free docetaxel was 6 × 10-8 M similar to EC50 of nontargeted AB type docetaxel doped micellar constructs whereas the EC50 value of its targeted counterpart decreased to 5.5 × 10-9 M. Overall, in this comparative study, the targeting group containing micellar construct fabricated with a 2 kDa PEG based diblock dendron-polymer conjugate emerges as an attractive drug delivery vehicle due to the ease of synthesis, high stability of the micelles, and efficient targeting.


Assuntos
Dendrímeros/química , Desenho de Fármacos , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Micelas , Modelos Moleculares , Conformação Molecular , Peptídeos Cíclicos/química , Polietilenoglicóis/química
8.
ACS Nano ; 11(1): 946-952, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28005325

RESUMO

Infections caused by bacterial biofilms are an emerging threat to human health. Conventional antibiotic therapies are ineffective against biofilms due to poor penetration of the extracellular polymeric substance secreted by colonized bacteria coupled with the rapidly growing number of antibiotic-resistant strains. Essential oils are promising natural antimicrobial agents; however, poor solubility in biological conditions limits their applications against bacteria in both dispersed (planktonic) and biofilm settings. We report here an oil-in-water cross-linked polymeric nanocomposite (∼250 nm) incorporating carvacrol oil that penetrates and eradicates multidrug-resistant (MDR) biofilms. The therapeutic potential of these materials against challenging wound biofilm infections was demonstrated through specific killing of bacteria in a mammalian cell-biofilm coculture wound model.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Nanocompostos/química , Polímeros/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Relação Dose-Resposta a Droga , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Polímeros/síntese química , Polímeros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...